tg-me.com/ds_interview_lib/851
Last Update:
Почему AUC-ROC может вводить в заблуждение при несбалансированных данных
🔸 Не учитывает реальное соотношение классов — AUC-ROC показывает, насколько хорошо модель различает классы, но не отражает точность предсказаний для каждого из них. Если 99% данных — класс 0, модель может почти всегда предсказывать 0 и все равно получить высокий AUC.
🔸 Проблемы с интерпретацией — высокая AUC-ROC не всегда означает, что модель полезна. Например, если интересен именно редкий класс, важно понимать precision, recall и F1-score.
BY Библиотека собеса по Data Science | вопросы с собеседований

Share with your friend now:
tg-me.com/ds_interview_lib/851